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Abstract. We describe a simple model for treating the frequency-dependent conductivityσe(ω)

and dielectric function Reεe(ω) of a quasi-one-dimensional conducting polymer. The polymer is
modelled as a composite medium consisting of spherical regions of ordered polymer, randomly
distributed in a much more disordered polymer host. Within each spherical region, the polymer
chains are highly oriented, but the axis of orientation varies randomly from sphere to sphere.
The disordered host is assumed to be isotropic, but with a conductivity which depends on the
connectivity of the polymer chains in the host.σe(ω) and Reε(ω), as calculated from this model
using a suitable effective medium approximation, reproduce all the main experimental features
associated with the metal–insulator transition in these polymers.

Highly conducting polymers have been the subject of intense recent interest [1–6]. Detailed
investigation of the temperature and frequency dependence of the dielectric response in
these systems has led to the discovery of metallic behaviour and a related insulator–metal
transition in doped polypyrrole and polyaniline [5, 6]. This transition is expressed by a
dramatic change in the qualitative behaviour of the dielectric coefficientε, depending on
the static electrical conductivityσ . In one type of sample,σ decreases sharply at low
frequencies, and has a very low static value. At higher frequencies in these samples,
there is a peak in the conductivity which moves towards lower frequencies as the d.c.
conductivity increases. The dielectric responseε1(ω) ≡ Reε(ω) of these samples is typical
of ordinary dielectric materials, namely, it is positive at all frequencies. Furthermore, the
dielectric coefficient increases with decreasing frequency, and this increase is sharper in
samples with higher conductivities. The second type of sample is characterized by larger
conductivities which do not fall towards zero at low frequencies. Instead, they either stay
roughly constant or even increase at very low frequencies. These samples also exhibit
a peak in the a.c. conductivity that continues to move towards lower frequencies as the
d.c. conductivity increases. The dielectric response of these samples exhibits three zero
crossings, leading to two frequency bands of negative dielectric coefficient. One band
appears at very low frequencies, whereε1(ω) attains large negative values. A smaller and
shallower band appears at higher frequencies. Both bands are wider and deeper in high-
conductivity samples. Between these two bands of negativeε lies an intermediate frequency
range of positive dielectric coefficient. The value ofε1(ω) in this regime increases with
increasing conductivity.

In recent experimental studies, this conductivity-dependent transition, from a dielectric
to metallic behaviour, is attributed to percolation in the presence of inhomogeneous
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Figure 1. Schematic representation of a random suspension of uniaxial inclusions in an isotropic
host. In samples of conducting polymers both the inclusions and the host are made from chains
of the same polymer. Inside the inclusions, these chains are aligned in parallel. Their distribution
of orientations in the amorphous host is highly disordered and is represented here by the wispy
lines around the ordered inclusions.

disorder [6]. Specifically, it is conjectured that the observed behaviour may be explained
by the existence of three-dimensional metallic regions embedded in disordered quasi-one-
dimensional regions with strong localization effects. Both regions are made up of the
same polymer chains and are distinguished only by having different degrees of three-
dimensional ordering. In this letter we propose a simple model of macroscopic disorder
which incorporates these two basic elements as different components of a composite
material. Similar microgeometric models [7] have been used previously to investigate
the mechanism for transport in conducting polymers. We use the model to calculate the
macroscopic dielectric response of such systems, and to investigate the percolation induced
insulator–metal transition. The model leads to a dielectric behaviour that reproduces all the
important features of the experimental results.

Our model for the microstructure of conducting polymers includes two basic components
(see figure 1). The first component is a collection of randomly distributed spheres.
Inside each sphere, the polymer chains are assumed to be ordered parallel to each other.
Macroscopically, these spheres are viewed as highly anisotropic particles with dielectric
axes defined by the direction of the polymer chains. They have a high conductivity in the
direction of the principal dielectric axis and low conductivities in the two perpendicular
directions. The dielectric tensorε̃s of these spherical inclusions is assumed to be given by
ε̃s = Rθφε̃RTθφ , where

ε̃ =
(
ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

)
(1)

is a uniaxial tensor andRθφ is a rotation matrix which specifies the orientation of the
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inclusion and varies from inclusion to inclusion. The second component of the model is
the host within which the inclusions are embedded. The host is made up of a disordered
collection of polymer chains. The orientation of each chain is assumed to vary independently
of its neighbours, on length scales that are smaller than the dimensions of the spherical
inclusions. Macroscopically, this collection of randomly oriented polymers is homogeneous
and isotropic. Its properties may therefore be described by an effective scalar dielectric
coefficientεh.

The macroscopic properties of this composite system can be calculated using
the Maxwell–Garnett (MG) approximation [8] (also known as the Clausius–Mosotti
approximation). This is one of the most widely used methods for calculating the bulk
dielectric properties of inhomogeneous materials [9, 10]. It is most appropriate when one of
the components can be considered as a host in which inclusions of the other component are
embedded. In this approximation, the field induced in the uniform host by a single spherical
or ellipsoidal inclusion is treated exactly, while the distortion of that field by the electrostatic
interaction between the different inclusions is approximated. This distortion is caused by
the charge dipoles and higher multipoles induced by one inclusion in the other inclusions.
Of these multipoles, the induced dipole moments cause the longest-range distortions. The
MG approximation therefore includes their average effect, resulting in a uniform field inside
all the inclusions. The MG approach has been extensively used for studying the properties
of two-component mixtures of isotropic materials with scalar dielectric coefficients. In
this letter we use a variant of this approach that is applicable to mixtures of anisotropic
inclusions [11].

To describe this approach, we will consider a parallel plate condenser whose plates are
large enough that edge effects can be neglected. The condenser is filled by a homogeneous
medium with a scalar dielectric constantεh in which non-overlapping spheres with a tensor
dielectric coefficient̃εs are randomly distributed. A voltage is applied between the condenser
plates in such a way that the volume averaged field in the system isE0. The average field
acting on each inclusion is not the applied fieldE0, but the well known Lorentz local field
El [9]. The difference betweenEl andE0 is due to the correlations between the positions
of different spheres arising from the fact that they are prohibited from overlapping. Using
this correction, the dipolar interaction between the inclusions is taken into account in an
averaged way. A simple method of calculatingEl , usually referred to as the excluded-
volume approach, was proposed by Bragg and Pippard [12]. This approach starts from the
fact thatE0 is the space-averaged field over the entire system, including both the inside and
the outside of the inclusions. This condition leads to a simple relation between the average
fields in the hostEl and the inclusionsEs , namely

f 〈Es〉 + (1− f )El = E0 (2)

wheref is the volume fraction of inclusions, and the angular brackets denote an average
over the volume of the inclusions. Solving the electrostatic problem for a single sphere
immersed in a uniform fieldEl , we find that the field inside the inclusion satisfies the
relation

Ds + 2εhEs = 3εhEl (3)

where Ds = ε̃sEs is the uniform displacement field inside the inclusion. Solving
equations (2) and (3), we find for the volume-averaged polarization

〈P 〉 = f

4π

〈
ε̃s − εhI
ε̃s + 2εhI

〉
θφ

3εhE0

(1− f )+ 3f εh
〈
(ε̃s + 2εhI )

−1
〉
θφ

(4)
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and the volume-averaged displacement fieldD0 = εhE0+4π〈P 〉. Here, the angular brackets
〈〉θφ denote an average over the dielectric tensor orientation inside the inclusions. The bulk
effective dielectric tensor, defined as the ratio ofD0 to E0, is therefore

ε̃e = εhI + 3f εh

〈
ε̃s − εhI
ε̃s + 2εhI

〉
θφ

1

(1− f )+ 3f εh
〈
(ε̃s + 2εhI )

−1
〉
θφ

. (5)

This is the Maxwell–Garnett result for a composite of anisotropic inclusions embedded
in an isotropic host. It depends on the type of anisotropy of the tensorε̃ and on the
orientation distribution function for the rotation matricesRθφ . In a mixture of randomly
oriented uniaxial inclusions, this distribution is uniform over solid angles. In this case the
composite as a whole should be isotropic, with a scalar dielectric coefficient. Carrying out
the averaging in equation (5) we indeed obtain an isotropic dielectric function

εe = εh + 3f εh
(ε⊥ + 2εh)

(
ε‖ − εh

)− 2εh
(
ε‖ − ε⊥

)
(1− f ) (ε⊥ + 2εh)

(
ε‖ + 2εh

)+ f εh (ε⊥ + 2ε‖ + 6εh
) . (6)

Equation (5) can be used to calculateε̃e for any appropriate orientation distribution of the
inclusions. It is expected, however, that the results presented below for the metal–insulator
transition remain qualitatively unchanged by such variations [11].

In the present model, we view the hostεh itself as a macroscopically isotropic
homogeneous system made up of the same anisotropic material as the inclusions. Roughly
speaking, it may be taken as a polycrystalline collection of anisotropic, randomly oriented,
compact grains much smaller than the spherical inclusions. Its dielectric properties can then
be calculated from the principal elements of the local dielectric tensorε‖ andε⊥ using the
well known effective medium approximation (EMA) [9, 13]

p
ε‖ − εh
ε‖ + 2εh

+ (1− p) ε⊥ − εh
ε⊥ + 2εh

= 0 (7)

where p is the ‘effective’ volume fraction ofε‖. Now in a mixture of two isotropic
components,p would be the volume fraction of the component with dielectric constantε‖.
In our model, however, the material is a collection of randomly oriented polymer chains,
and the concept of a volume fraction has no clear definition. Instead it should be viewed
as a measure of the connectivity of the componentε‖. In highly disordered samples, the
polymer chains are relatively short. This leads to short continuous paths ofε‖, only a few of
which will connect opposite sides of the entire system. This low connectivity corresponds
to a small value ofp. By contrast, in samples with lower disorder the polymer chains
are longer, on average, and create more extended continuous paths ofε‖. These samples
will have relatively many paths ofε‖ which span the entire system, and therefore higher
connectivity and a larger effective value ofp.

The EMA of (7) is well known to predict a percolation transition atp = pc = 1/3. It
therefore provides a simple mechanism for a percolation induced insulator–metal transition
in disordered polymers. Highly disordered systems will have effective values ofp lower than
pc, and therefore lie below percolation. Systems with low disorder have higher connectivity
valuesp > pc and therefore fall above the percolation threshold.

The bulk effective dielectric tensor of the entire system is now obtained by substituting
the EMA result forεh into the MG approximation, equation (6). To illustrate the predicted
dielectric behaviour for such a disordered system, we consider a highly simplified model of
a quasi-one-dimensional conductor. In the high-conductivity direction we assume a Drude
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metal with an additional term arising from bound charge carriers:

ε‖(ω) = 1− ω2
p

ω (ω + i/τ)
+ ω2

s

ω2
0 − ω2− iγω

. (8)

Here the first two terms are the dielectric function of a simple Drude metal with plasma
frequencyωp and mean relaxation timeτ . The third term represents an additional
contribution arising from bound charge carriers within the ordered uniaxial inclusions,
which are assumed to have a characteristic resonance frequencyω0. The amplitudeωs
and damping constantγ are material-dependent constants describing these bound charge
carriers. We assume that the dielectric constant in the perpendicular directions is simply
that of an insulator:

ε⊥(ω) = 1. (9)

Figure 2 shows typical results for this model, for samples with different values of the
connectivity parameterp both below and above the percolation threshold. For the volume
fraction of the inclusions we choosef = 0.5, a value which approximates the degree of
crystallinity reported for highly conducting samples of doped polypyrrole [5]. Following
the same experimental data, we chooseωpτ = 100 for the metallic componentε‖. The
constantsω0, ωs andγ , are not explicitly available from the data. Their normalized values,
(ω0/ωp)

2 = 0.02, (ωs/ωp)2 = 10 andγ /ωp = 0.1, were chosen as an example that produces
a very good agreement with the experimental results of [6]. It is important to emphasize that
changing these values does not change the main qualitative features of the metal–insulator
transition as reported below.

The effective dielectric function of figure 2 clearly shows a transition from dielectric to
metallic behaviour of the dielectric coefficient, associated with an increase in the low-
frequency electrical conductivity. The resulting frequency-dependent conductivity and
dielectric coefficient exhibit all the important characteristics observed in the experiments. In
low-connectivity systems (p < 1/3), the conductivity has a peak near the plasma frequency
ωp, which moves towards lower frequencies asp increases. In this regime ofp, the
conductivity decreases sharply to zero at low frequencies (ω < 0.1ωp). The corresponding
dielectric coefficients are positive and small over the entire range of frequencies. They
increase more sharply with decreasing frequencies in samples with higher connectivities, and
larger low-frequency conductivities. Precisely at the percolation threshold (p = pc = 1/3),
the low-frequency conductivity does not fall to zero but instead stays constant over a wide
range of frequencies. The same behaviour is observed experimentally in polyaniline samples
near the insulator–metal transition. The dielectric coefficient of this system (atp = pc)
increases sharply at low frequencies and is positive at all frequencies.

A qualitatively different behaviour is obtained in higher-connectivity systems, where
p > pc. In this case, the conductivity develops a stronger peak at intermediate frequencies
(ω ≈ 0.1ωp). As p increases, this peak moves to lower frequencies. The conductivity
increases again at very low frequencies (ω ≈ 0.01ωp), to values that are only slightly lower
than the maxima nearω ≈ 0.1ωp. This low-frequency increase becomes more pronounced
in samples with higher connectivities. Just such behaviour has been observed in polyaniline,
in the sample with the highest d.c. conductivity [6].

The dielectric coefficients of these high-connectivity samples exhibit three zero crossings
and two frequency bands of negative Reεe. In the lower of these two bands (ω < 0.1ωp),
Reεe is large and negative, becoming more negative with increasingp. The second, and
much shallower, band develops at intermediate frequencies. Both negative bands become
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(a)

(b)

Figure 2. (a) The bulk effective dielectric coefficient Reεe(ω), and (b) the electrical conductivity
Reσe(ω) (normalized byσ0 = ω2

pτ/4π ) for the model of figure 1. Results are shown for
connectivitiesp above the percolation threshold:p = 0.34 (dash-dot line),p = 0.37 (dashed
line), p = 0.40 (solid line); at the threshold (dotted line); and below it:p = 0.26 (solid line),
p = 0.29 (dashed line),p = 0.32 (dash-dot line).

broader with increasing connectivityp. Between these two bands Reε is positive and, for
a given frequency, is a monotonically increasing function ofp.

These results show that our macroscopically disordered structural model can easily
reproduce the experimentally observed dielectric response of conducting polymers. The
calculated Reεe(ω) shows all the distinctive characteristics of the experimental results near
an insulator–metal transition, and also depends in the same way on the d.c. conductivity.
When the host is at or below percolation, Reεe(ω) is positive at low frequencies, while for
an above-percolation host, Reεe(ω) is negative over a broad range of low frequencies, in
good agreement with experiments on both polypyrrole and polyaniline [5, 6]. Furthermore,
these results confirm, in agreement with experiment, thatε(ω) should be strongly dependent
on the microstructure of the polymer system. Finally, our composite results also exhibit a
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characteristic peak inσe(ω). This peak, which extends down to very low frequencies, arises
from localized oscillations of the charge carriers in one or a few crystallites of polymer;
the carriers are localized because of the disordered microstructure (which is characterized
by a spatially varying dielectric tensor). Such a peak is typical of the conducting polymers,
where it has been attributed to both composite effects [5, 6, 14] and to Anderson localization
[4]. The present results support the idea that this behaviour may be due simply to
the inhomogeneity of the polymer medium, without the necessity of invoking Anderson
localization.

In summary, we have described a simple model to treat macroscopic disorder in systems
of quasi-one-dimensional organic conductors. The model combines a Maxwell–Garnett
treatment of anisotropic inclusions with an effective medium approach for calculating the
properties of the isotropic host. The model leads to a macroscopic dielectric behaviour which
agrees with experiments on polypyrrole and polyaniline, and accounts for the dependence
of εe(ω) on the static electrical conductivity.

We are grateful for useful conversations with A J Epstein, A Kazaryan and R V Kohn. This
work was supported by NSF grant DMS-9402763 and ARO grant DAAH04-95-1-0100 (OL)
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